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In first-principles theory of nonequilibrium quantum transport, there are two main formalisms—the nonequi-
librium Green’s function �NEGF� and the Lippmann-Schwinger �LS� equation, which have been applied to a
wide range of device physics problems when coupled with electronic structure methods such as the density-
functional theory. In this work, we derive a relationship that formally connects the two formalisms at nonequi-
librium. The relation is between the nonequilibrium scattering wave function and NEGF and it cannot be
derived directly from the LS equation itself. We also found that the relation is practically useful by giving rise
to a significant speed up in numerical computation of transmission coefficients for multiprobe systems.
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I. INTRODUCTION

Quantitative theory of nonlinear and nonequilibrium
quantum transport of nanoelectronic devices is important not
only for understanding quantum device physics but also for
practical applications in technology. At truly nanoscale, elec-
tron and spin transport are critically influenced by atomic,
chemical, and materials properties of the device, as well as
by nonequilibrium statistical properties of the device scatter-
ing region when bias voltage is applied and charge or spin
current flows. A quantitative theory should therefore calcu-
late the device Hamiltonian H under nonequilibrium trans-
port conditions from atomic first principles. In order to
handle large number of atoms while keeping reasonable ac-
curacy, state-of-the-art and practical nanodevice modeling
techniques are all based on density-functional theory �DFT�
for calculating H.1–17 In addition, the nonequilibrium trans-
port conditions under finite bias are treated by either the
Keldysh nonequilibrium Green’s functions �NEGF� �Ref. 3�
or by filling electronic levels of H according to the chemical
potentials of different device leads.1 Mathematically, the
former is the matrix Green’s function-based technique while
the latter is a scattering wave-function-based technique
where a particularly powerful implementation is by using the
Lippmann-Schwinger �LS� equation.1

So far, both NEGF-DFT and LS-DFT methods have been
applied to a wide range of problems of quantum transport in
nanoelectronics. While these two formalisms are expected to
have a formal connection at nonequilibrium, to the best of
our knowledge such a connection has yet to be found. We
recall, for example, the well-known Fisher-Lee relation18

which connects scattering matrix to the Green’s functions at
the boundary of the device scattering region. Another ex-
ample is the injectivity that relates scattering wave-function
density ���2 inside the scattering region to the Green’s
function.19 It is the purpose of this work to go one step
further, namely, to establish a formal connection of NEGF
and LS nonequilibrium transport formalisms. In particular,

we derive a relation between the nonequilibrium scattering
wave function and NEGF and this relation cannot be derived
directly from the LS equation itself. We also found that this
relation is practically useful by giving rise to a significant
speed up in numerical computation of transmission coeffi-
cients for multiprobe systems; therefore it provides a differ-
ent technique which is a hybridization of NEGF+DFT and
LS+DFT.

II. THEORY AND NUMERICAL CALCULATIONS

We begin by briefly discussing the LS-DFT and NEGF-
DFT formalisms. In LS-DFT, one solves the LS equation,1

���� = ���
0� + G0

rV���� . �1�

Here, the device Hamiltonian H is divided into two parts H
=H0+V where V is the scattering potential including the self-
consistent Coulomb interaction U; G0

r =1 / �E−H0+ i��; ��
0 is

the scattering wave function from lead � at V=0. Here ����
and ���

0� are wave functions of the infinite system including
the lead regions. If one restricts the wave functions in the
scattering region, a self-energy �r has to be included to ac-
count for the external leads and LS equation is still given by
Eq. �1� but with G0

r =1 / �E−H0−�r�. The Coulomb potential
U is obtained from the Poisson equation subjected to proper
device boundary conditions,

�2U = − 4���r� . �2�

The real-space-charge density ��r� is contributed by both
left- and right-coming scattering wave functions as well as
by bound states of the open device system, and Eqs. �1� and
�2� are iterated to self-consistency.1 In the pioneering paper
of Lang,1 the Green’s function G0

r of Eq. �1� is written ana-
lytically due to the use of jellium model for the device leads:
this approximation drastically reduces complexity of the cal-
culations. It is often necessary to use full atomic structures to
realistically model devices leads which is so far an unsolved
problem within LS-DFT.
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In the NEGF-DFT formalism,3 the device is divided into
three parts: left or right leads plus the scattering region, as
shown in Fig. 1. The retarded Green’s function of the scat-
tering region is calculated by direct matrix inversion,

Gr =
1

E − H − �r , �3�

where �r is the self-energy due to the presence of atomic
leads; H is the Hamiltonian of the device scattering region
that includes the self-consistent Coulomb potential U deter-
mined by Eq. �2� as well as other interactions such as the
exchange-correlation potential Vxc���. In NEGF-DFT, the
charge-density matrix � is obtained from the distribution
function G� which in turn is related to the retarded Green’s
function Gr through the Keldysh equation.3,20 By solving
Eqs. �3� and �2� and G� to self-consistency, the Hamiltonian
H, NEGF, and hence all the scattering properties are obtained
from atomic first principles. So far, the NEGF-DFT formal-
ism has been implemented by many groups3–6,8–13,16,17 and
applied to large number quantum transport problems.

We now proceed to derive a formal connection between
wave-function-based approach �LS-DFT� to the Green’s
function-based approach �NEGF-DFT�. For transport prob-
lems, there are three possible wave functions for an electron
with energy E: scattering states ��L/R� for which electrons
come from the left �L� or right �R� lead and bound state ��b�
which lives inside the scattering region. Hence in general we
can write the density matrix3 of the scattering region as

�̂�E� = �
�m

1

hvm
���m����m�f��E� + �

b

f�E�	�E − Eb���b���b� ,

�4�

where f�	 f�E−qv�� is the Fermi distribution function and
�=L ,R, ��Lm� is the scattering wave-function for incident
electrons coming from left lead on quantum channel m and
vm is the channel’s group velocity. Next, we wish to derive
the same equation of density matrix using NEGF. In the
NEGF formalism, the density matrix of the scattering region
is given by �̂=−iG� / �2�� where G� satisfies the Keldysh
equation,

G� = �1 + Gr�r�G0
��1 + �aGa� + Gr��Ga, �5�

here ��= i��
�f� and 
� is the linewidth function of the
device leads and −iG0

�= if�E��Gr0−Ga0� is the distribution
function of the scattering region without the leads; Gr0 is the
retarded Green’s function for the corresponding isolated sys-
tem.

The first term of Eq. �5� actually vanishes except at dis-
crete energies E=Eb where Eb is the bound-state energy of
the scattering region. This can be easily seen by considering
a simple case where the scattering region has a single energy
level E0 so that Gr0=1 / �E−E0+ i�� with �→0. From Dyson
equation Gr= �1+Gr�r�Gr0, the first term of Eq. �5� becomes

Gr�Gr0�−1G0
��Ga0�−1Ga = − f�E�Gr��Ga0�−1 − �Gr0�−1�Ga.

�6�

Because �Ga0�−1− �Gr0�−1=−2i� and �→0, expression �6�
vanishes at all energies except those of bound states Eb
where Gr,a in the above expression diverges. The bound-
states energies Eb can be found by setting the denominator of
Eq. �3� to zero: E−H−�r�Eb�=E−H−�a�Eb�=0. This is
typically a highly nonlinear algebraic equation because all
quantities are matrices. We now reduce the first term of Eq.
�5� in terms of these bound states of the scattering region.
Using the fact

�Gr�−1 − �Ga�−1 = �Gr0�−1 − �Ga0�−1,

expression �6� becomes −f�Eb��Gr�Eb�−Ga�Eb��
=2�i�bf�E�	�E−Eb���b���b� by using the spectral form of
the Green’s functions in terms of the bound states which can
be evaluated after Eb is found. For energies below the con-
tinuous spectrum of the scattering region, Gr of Eq. �3� can
be written in the spectral form in terms of bound states,

Gr = �
b

��b���b�/�E − Eb + i�� , �7�

where ��b� is the wave function of the bound states. Using
the Plemelj formula 1 / �z� i0+�= P�1 /z� i�	�z�, the first
term of the Keldysh equation �5�, i.e., expression �6�, is re-
duced to 2i��bf�E�	�E−Eb���b���b�. Therefore, the density
matrix of the scattering region in terms of NEGF can now be
written as

�̂�E� =
− i

2�
G� = �

�

Gr
�Gaf�/�2��

+ �
b

f�E�	�E − Eb���b���b� . �8�

Comparing Eq. �8� to Eq. �4� suggests the following rela-
tion �to be proved below�:

���m� = �mGr�W�m� , �9�

where �W�m� is the mth renormalized eigenstate of linewidth
function matrix 
� such that 
�=�m�W�m��W�m�. The chan-
nel number m depends on the energy of incident electron,
�m=
�vm, and vm is the channel group velocity. Inverting
Eq. �9�, we obtain,

�E − H − �r����m� = �m�W�m� , �10�

I

II

III

(b)(a)

xx RL

FIG. 1. �a� A two-probe nanostructure where exact solutions of
the scattering wave function; the linewidth function 
 and NEGF
are available. �b� An arbitrary two-probe nanostructure after adding
a potential V2 inside the scattering region.
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�E − H − �r���b� = �E − H − �a���b� = 0. �11�

Here for completeness, we have also written down the equa-
tion for determining bound states �b. Equations �9�–�11� are
the central results of this paper: they connect scattering wave
function ���m� in the scattering region to the corresponding
Green’s function Gr. Furthermore, we will show below that
they provide the formal connection between LS and the
NEGF transport formalisms.

To prove Eq. �10�, we start by considering a two-
dimensional �2D� two-probe quantum nanostructure shown
in Fig. 1�a� where the confining potential V1=V0 is nonzero
in the gray area. For simplicity, let us assume a hard wall
confinement V0=�. Once Eq. �10� is proved for this simple
geometry, we can then prove it for any arbitrary geometry
using the LS equation. For the system in Fig. 1�a�, the
Green’s function has been calculated before,20

Gr�x,y,x�,y�� = �
m

− i

�vm
�m�y��m�y��exp�ikm�x − x��� ,

�12�

where km=
2m�E−�m� /� with �m as the threshold of quan-
tum channel m and vm=�km /m. Here �m is the normalized
transverse-mode wave function. The linewidth function is
given by20


��x,y,x�,y�� = �
m

�m�y��vm�m�y��	�x − x��	�x − x�� ,

�13�

where x� is the x coordinate of the interface between scatter-
ing region and the lead � �indicated by vertical dash lines in
Fig. 1�a��. For this system, the scattering wave function is
simply20 ��L/R�=�m�y�exp��ikmx� after choosing the origin
of the coordinates such that x�=0.

Now we prove Eq. �10� gives the same wave function
��L/R�. From the above linewidth function 
��x ,y ,x� ,y��, it
is not difficult to obtain the W function �W�m� used in Eq. �9�,

W�m�x,y� = �m�m�y�	�x − x�� . �14�

Therefore from Eq. �10�, the scattering wave function is

��m�x,y� = �m� dx�dy�Gr�x,y,x�,y��W�m�x�,y��

= − i�m�y�exp�ikm�x − x��� . �15�

Since xL�x�xR, we have

��L/Rm� = �m�y�exp��ikmx + ikm�xL/R� − i�/2� ,

which are the same wave functions as quoted above since the
factor exp�ikm�x��� is unity by adopting the same coordinate
system used in Ref. 20 �i.e., x�=0�. Now the physical mean-
ing of the wave function in Eq. �10� becomes clear: ���m� is
precisely the scattering wave function in the scattering re-
gion with the origin chosen at the interface between the scat-
tering region and the lead �, i.e., setting x�=0.

Having proved Eq. �10� for the simple structure of Fig.
1�a�, we now prove it for an arbitrary geometry shown in
Fig. 1�b�. Compare with that in Fig. 1�a�, the potential in the

scattering region of Fig. 1�b� can be viewed as modified to
V=V1+V2 with V2=−V0 in regions I and II and V2=V0 in
region III. Then, using the LS equation with G0

r =1 / �E−H0
−�r�, Eq. �1� becomes

���m� = �mG0
r �W�m� + G0

rV2���m� .

From this equation, solving for ���m� we indeed obtain Eq.
�9� with Gr=1 / ��G0

r�−1−V2−�r�. Finally, when the potential
in the scattering region is not constant, Eq. �10� can be
proved in a similar fashion. In addition, it is also straightfor-
ward to prove Eq. �10� when magnetic field is present.

It is easy to see that the LS equation follows from Eq.
�10�. From the Dyson equation Gr=G0

r +G0
rV2Gr, multiplying

both sides by �W�m�, we obtain

Gr�W�m� = G0
r �W�m� + G0

rV2Gr�W�m� ,

which is precisely the LS equation when Eq. �10� is used.21

From the above discussion, we see that the result �10� is not
equivalent to the LS equation in the sense that one cannot
directly prove Eq. �10� from the LS equation �one has to first
complete the proof for Fig. 1�a��. Another interesting out-
come of Eq. �9� is that the well-known Fisher-Lee relation
between scattering matrix and the Green’s function can be
written in terms of the W function,

s��mn = − 	��mn + i�W�m�Gr�W�n� = − 	��mn + i�W�m���n�/�m,

�16�

where s��mn is the scattering matrix element describing scat-
tering event of channel n in lead � to channel m in lead �.

Having established the formal connection between LS and
NEGF, we realize that Eq. �10� can be quite useful in DFT
atomistic calculations of quantum transport, in addition to
the existing NEGF-DFT �Ref. 3� and LS-DFT techniques.1

First of all, when linear combination of atomic-orbital basis
�LCAO� is used in DFT,3–6,8–13,16,17 the matrix E−H−�r is in
general a sparse matrix with a narrow bandwidth3 for which
an iterative numerical scheme for solving Eq. �10� becomes
very efficient both computationally and storage wise. In con-
trast, in the LS �1�, the factor G0

rV is not a sparse matrix
hence it does not enjoy fast iterative numerics.

Secondly, even without using iterative scheme, solving
the linear Eq. �10� is much faster and requires less memory
than inverting a matrix to find the Green’s function as in Eq.
�3�. Usually, the transfer-matrix method22 is much faster than
the matrix inversion. Note that the transfer-matrix method
works well for the short-range overlap integral. For ab initio
calculations, the overlap integral is of long range and the
transfer-matrix method is not as fast unless one is interested
in transport through a long nanowire. In addition, the
transfer-matrix method is most suitable for a two-probe sys-
tem when two leads are along the same direction �see Fig.
1�a��. For multilead system or two-probe system when two
leads are not along the same direction �see Fig. 1�b��, one has
to use a modified transfer-matrix method �see Ref. 23�. For
the case of Fig. 1�a�, our method has no advantage over
transfer-matrix method for a long wire. For a multiprobe
system or the case of Fig. 1�b�, due to the long-range overlap
integral the modified transfer-matrix method is very ineffi-
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cient. In this case our method is much faster.24 For instance,
if dimension of the matrix E−H−�r for a molecular device
is around 2000, the speed gained by solving Eq. �10� over
inverting this matrix to find the Green’s function is a factor
of 8 �see Table I�.

Thirdly, when constructing the nonequilibrium part of the
charge density, using Eqs. �9� and �4� is much faster than
using Eq. �8� because the latter involves matrix multiplica-
tion Gr��Ga.25 We note that our scheme �10� does involve a
matrix diagonalization of 
� to find �W�m�. However, the
dimension of the matrix 
� is much smaller3 than that of H
since 
� represents the surface coupling: only those atoms
near the lead-scattering region contribute to 
�. In addition,
for a given electron energy, there usually exist only a few
propagating eigenmodes on the order of ten. Hence one can
use iterative methods, such as the Lanczos method, to
quickly find these eigenmodes: this is possible because 
� is
a symmetric positive-definite matrix. Significantly, although
Eq. �10� has to be solved at each iteration step of the DFT
self-consistent cycle, the diagonalization of 
� needs to be
done only once for each energy.

We note in passing that Eq. �10� also provides an efficient
technique for calculating transport properties of mesoscopic
systems with multileads. Comparing with existing techniques
for calculating transmission coefficient, Eq. �10� has very
distinct advantages. It is much faster when applied to multi-
probe systems or to two-probe systems where the two leads
orient in different directions �e.g., Fig. 1�b��; the construction
of Hamiltonian is much simpler than that of the modified
transfer-matrix method which has seen powerful applications
in literature23 and, similar to DFT transport calculations, de-
vices with long-range coupling between distant sites can be
easily handled.

To demonstrate the usefulness of our scheme Eq. �10�,
Table I tabulates the CPU time needed for calculating trans-
mission coefficients for various systems. First, a �22,0� car-
bon nanotube �CNT� junction coupled to three leads was
considered. For the direct matrix inversion method, the CPU

time is solely determined by the dimension of the matrix in
the denominator of Eq. �3�. On the other hand, in our scheme
�10�, the CPU time is determined by the sparseness of the
matrix as well as the dimension of the linewidth matrix 
�.
The CPU time of using the scheme of Eq. �10� is roughly the
same whether or not the orientation of the two devices leads
is in the same direction. As another test, we consider a two-
probe mesoscopic structures shown in Fig. 1�b� in the pres-
ence of disorder inside the scattering region and calculated
transmission coefficients for 1000 disorder configurations us-
ing a tight-binding square lattice model. The reduction in
CPU time is significant using our scheme �10� over a very
fast modified transfer-matrix technique,23 as shown in the
last two rows of Table I. Finally, for all cases we examined,
the speed-up factor increases as the system size grows.

III. SUMMARY

In summary, we have derived a relation between the non-
equilibrium scattering wave function and the real-space
Green’s function �9�. This relation formally connects the
NEGF with the LS formalism at nonequilibrium but is, of
course, valid at equilibrium as well. Importantly, Eqs. �9� and
�10� cannot be directly derived from LS equation. Numerical
investigations on various atomic junctions and mesoscopic
systems indicate that relations �9� and �10� have very useful
applications in quantum transport analysis; in particular it
gives significant speed up over NEGF and LS methods for
calculating transmission coefficients for multiprobe systems.
Even compared with the best numerical scheme available in
the mesoscopics literature, our scheme based on Eqs. �9� and
�10� gives significant improvement in computational time.
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TABLE I. The CPU time for calculating transmission coefficient of several systems. The column labeled
“direct inversion” indicates cost of CPU time by calculating Eq. �3�. The last column is by calculating Eq.
�10�. The speed-up factor is significant across the board.

Matrix
size

Square
ratio

Direct
inversion

Our
method

Molecular
device

�22,0� CNT
2496 0.125 55.4s 6.57s

4608 0.539 315.9s 10.74s

Matrix
size

Square
ratio

Transfer
matrix

Our
method

Mesoscopic
device

Square lattice
2116 0.0024 104s 37.5s

4096 0.0013 308s 86.6s
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